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Abstract This paper is concerned with a kind of quasilinear Schrödinger equation with
combined nonlinearities, a convex term with any growth and a singular term, in a bounded
smooth domain. Multiplicity results are obtained by critical point theory together with trun-
cation arguments and the method of upper and lower solutions.
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1 Introduction and Main Results

Consider the following quasilinear Schrödinger equation{
−�pu − p

2p−1 u�p(u2) = f (x,u) in Ω,

u = 0 on ∂Ω,
(1.1)
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where Ω is a domain in R
N (N ≥ 3). Quasilinear equations of form (1.1), referred as so-

called Modified Nonlinear Schrödinger Equation due to the quasilinear and non-convex term
u�pu2, and have been derived as model of several physical phenomena (see [4–7, 19, 20,
29]).

Problems of type (1.1) were studied primarily in the context of p = 2 and subcritical
case. In this connection, we refer the readers to [9, 14, 22, 24, 26, 27, 33, 41]. One may note
that one of the main difficulties of the quasilinear problem (1.1) is that there is no suitable
space on which the energy functional is well defined and belongs to C1 class. To over-
come this difficulty, several ideas and techniques were developed, including the constrained
minimization argument [14, 24, 33], the Nehari manifold [27], the method of a change of
variables [9, 26] and the perturbation method [22]. For critical case, extra difficulties arise
since the lack of compactness of the Sobolev embedding. As pointed by Liu et al. in [26], the
critical case for (1.1) is very interesting. Concerning this case, Moameni in [31] considers
the related singularly perturbed problem and obtains a positive radial solution in the radially
symmetric case. Later on, an existence result of positive solutions was given by João Mar-
cos et al. in [12] via Mountain-Pass Theorem and P.L. Lions’ Concentration-Compactness
Principle. Recently, Liu et al. consider the existence of positive solutions for a quasilinear
elliptic equation like (1.1) in [23] by perturbation method. Deng et al. [13] and Liu et al.
[25] deal with a general type of elliptic equation like (1.1) and obtain a positive solution by
variational argument and P.L. Lions’ Concentration-Compactness Principle. However, there
seems to be little progress on the existence of positive solution for (1.1) with critical growth.
Up to now, to the authors’ best knowledge, there is no one considering problem (1.1) with
supercritical nonlinearities.

Recently, there appeared some works dealing with (1.1) when p �= 2. For example, Liu
[21] and Liu and Zhao [28] consider problem (1.1) in a bounded smooth domain, to our
best knowledge, this is the only results established for the p-Laplacian case in a bounded
domain.

Motivated by above results, in this paper, we consider the p-Laplacian case in a bounded
smooth domain, but this time, different from above works, our perturbations involving a
singular term, i.e. we consider the following quasilinear Schrödinger equation⎧⎪⎨

⎪⎩
−�pu − p

2p−1 u�p(u2) = λuβ + a(x)u−γ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P )

where Ω ⊂ R
N(N ≥ 3) is a bounded smooth domain, �pu = div(|∇u|p−2∇u) is the

p-Laplacian with 1 < p < ∞, λ > 0 is a parameter, γ and β are positive constants. a(x) ≥ 0
is a nontrivial measurable function. To emphasize the dependence on λ or β , problem (P )
is often referred to as (Pλ) or (Pλ,β) , and the subscript λ or β is omitted if no confusion
arises.

As mentioned before, a major difficulty associated with (P ) is the following: one may
seek to obtain solutions by looking for critical points of the associated “natural” functional:
J (u) : W 1,p

0 (Ω) → R given by

J (u) := 1

p

∫
Ω

(
1 + p|u|p)|∇u|pdx − λ

β + 1

∫
Ω

g(u)β+1dx − 1

1 − γ

∫
Ω

a(x)g(u)1−γ .

However, this functional is not well-defined for all u ∈ W
1,p

0 (Ω), hence it is difficult to apply
variational methods directly. To overcome this difficulty, we use the method of changing
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variables developed in [9, 26] for p = 2, [21, 28] for p-Laplacian case (i.e. 1 < p < ∞),
and make a new different definition of weak solutions. That is

v := g−1(u),

where g is defined by

g′(t) = 1

(1 + p|g(t)|p)1/p
, ∀t ∈ [0,+∞),

g(t) = −g(−t), ∀t ∈ (−∞,0].
(1.2)

We now make use of a change of unknown v = g−1(u) (note that g is smooth and invertible,
see Lemma 2.1 for more information about g), and define an associated equation⎧⎪⎨

⎪⎩
−�pv = [λg(v)β + a(x)g(v)−γ ]g′(v) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(PN )

It is easy to see that problem (PN ) is equivalent to our problem (P ), which takes u = g(v) as
its solutions. More precisely, we say u is a weak solution of (P ), if v = g−1(u) ∈ W

1,p

0 (Ω)

is a positive weak solution of problem (PN ), i.e.∫
Ω

|∇v|p−2∇v∇ϕdx = λ

∫
Ω

g(v)βg′(v)ϕdx +
∫

Ω

a(x)g(v)−γ g′(v)ϕdx

for every ϕ ∈ W
1,p

0 (Ω).
Let p∗ := Np

N−p
(respectively +∞) if p < N (respectively p ≥ N ). We introduce the

following assumption on the function a(x).

(H) There are ϕ0 ≥ 0 in C1
0 (Ω) and q > N such that a(x)ϕ

−γ

0 ∈ Lq(Ω).

Now we can state our main results as follows

Theorem 1.1 Suppose (H) holds, let 1 < p <
β+1

2 < p∗ and γ > 0. Then there exists λ∗ > 0
such that for all λ ∈ (0, λ∗), problem (P ) has two solutions.

Theorem 1.2 Suppose (H) holds, let β+1
2 ≥ p∗ and γ > 0. Then there exists λ∗ > 0 such

that for all λ ∈ (0, λ∗), problem (P ) has two solutions.

Remark 1.3 Note that we do not require that γ < 1, a restriction that appears often in the
literature (see, e.g., Sun et al. [34], Wang et al. [35], Zhang [40]).

Remark 1.4 Note that β+1 = 2p∗ behaves like a critical exponent for (PN ) (see Lemma 2.1,
property (8) in next section). Compared with the works mentioned before, in the case of
β + 1 = 2p∗ or β + 1 > 2p∗, problem (PN ) becomes more complicated since the effects of
the singular term and the nonlinearity g and the loss of compactness of Sobolev embedding.

Recently, there appeared some works dealing with singular equations driven by
p-Laplacian, we mention the works of Agarwal et al. [1], Zhao et al. [39], Perera and
Zhang [32], Gasínski and Papageorgiou [17], Giacomoni et al. [18]. In those mentioned
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works, the authors deal with subcritical nonlinearities. In the case of critical or supercritical
exponent (β + 1 ≥ 2p∗), which will be studied in Sect. 3, problem (PN ) becomes more

delicate because the Sobolev embedding W
1,p

0 (Ω) ⊂ L
β+1

2 (Ω) is not compact. To our best
knowledge, there is no one considering p-Laplacian with both such singularities and critical
or supercritical nonlinearities. In this paper, We will deal with critical case and supercritical
case in a unified approach by using truncation techniques and Moser iteration technique,
which are different from the methods used in [12, 13, 31]. For Laplacian equation with a
singular term and critical nonlinearities, we refer the reader to [35, 38]. In [35], the existence
of positive solutions have been proved by Nehari manifold and P.L. Lions’ Concentration-
Compactness Principle, while in [38], the multiplicity results have been obtained by Ekeland
variational principle and careful analysis the minimax level for which the compactness can
be established.

This paper is organized as follows. In Sect. 2, we consider the subcritical case (i.e. β +
1 < 2p∗) and give the proof of Theorem 1.1; In Sect. 3, we deal with our problem in critical
case and supercritical case (i.e. β + 1 ≥ 2p∗) in a unified approach and give the proof of
Theorem 1.2.

Throughout this paper, we make use of the following notation. Lp(Ω),1 ≤ p ≤ ∞, de-

notes Lebesgue space; the norm in Lp(Ω) is denoted by ‖ · ‖p ; the norm in W
1,p

0 (Ω) is
denoted by ‖ · ‖; C,C0,C1,C2, . . . denote (possibly different) positive constants; X∗ de-
notes the dual space of Banach space X, (W

1,p

0 (Ω))∗ is W−1,p′
(Ω), where 1

p
+ 1

p′ = 1;

λ1 denotes the first eigenvalue of −�p with zero Dirichlet condition on Ω , v̂1 > 0 is the
eigenfunction corresponding to λ1 with ‖̂v1‖p = 1.

2 Subcritical Case: β + 1 < 2p∗

As we have mentioned in previous section, β + 1 = 2p∗ behaves like a critical exponent
for problem (PN ), this can be seen from properties (8) in Lemma 2.1 below. In this section,
we consider the subcritical case β + 1 < 2p∗. We point out that since (PN ) is equivalent to
problem (P ), so, we only consider problem (PN ) in this and the following sections.

Next, let us summarize some properties of the function g defined by (1.2). For its proof,
we refer to [21, 28].

Lemma 2.1 The function g defined by (1.2) satisfies the following conditions:

(1) g(0) = 0;
(2) g is uniquely defined, C∞ and invertible;
(3) 0 < g′(t) ≤ 1 for all t ∈R;
(4) 1

2 g(t) ≤ tg′(t) ≤ g(t) for all t > 0;
(5) g(t)/t ↗ 1, as t → 0+;
(6) |g(t)| ≤ |t | for all t ∈R;
(7) g(t)/

√
t ↗ K0 := √

2p−1/(2p), as t → +∞;
(8) |g(t)| ≤ K0|t |1/2 for all t ∈R;
(9) g2(t) − g(t)g′(t)t ≥ 0 for all t ∈R;

(10) There exists a positive constant C such that |g(t)| ≥ C|t | for |t | ≤ 1 and |g(t)| ≥
C|t |1/2 for |t | ≥ 1;

(11) |g(t)g′(t)| < K2
0 for all t ∈R;

(12) g′′(t) < 0 when t > 0 and g′′(t) > 0 when t < 0.
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Lemma 2.2 [8, Proposition 17.3] Let 1 < p < +∞. There exist two positive constants cp

and Cp such that for every ξ, η ∈R
N

cpNp(ξ, η) ≤ (|ξ |p−2ξ − |η|p−2η
) · (ξ − η) ≤ CpNp(ξ, η),

a dot denotes here the Euclidean scalar product in R
N , and Np(ξ, η) := {|ξ | + |η|}p−2|ξ −

η|2.

Lemma 2.3 [32, Proposition 2.1] Suppose h ∈ Lq(Ω) for some q > N . Then the Dirichlet
problem {

−�pu = h(x) in Ω,

u = 0 on ∂Ω,

has a unique solution u ∈ C1
0 (Ω). Moreover if h ≥ 0 is nontrivial, then

u > 0 in Ω,
∂u

∂ν
> 0 on ∂Ω,

where ν is the interior unit normal on ∂Ω .

Let A : W 1,p

0 (Ω) → W
1,p

0 (Ω)
∗

be the nonlinear map defined by

〈
A(u), y

〉 = ∫
Ω

|∇u|p−2∇u∇ydx for all u,y ∈ W
1,p

0 (Ω). (2.1)

Lemma 2.4 [16] The map A : W 1,p

0 (Ω) → W
1,p

0 (Ω)
∗

defined by (2.1) is type of (S+), that
is, if un ⇀ u in W

1,p

0 (Ω) and lim supn→∞〈A(un),un − u〉 ≤ 0, then un → u in W
1,p

0 (Ω).

Since we will use upper-lower solution method to produce the first solution, so, we recall
the definitions of lower solution and upper solution of problem (PN ).

Definition 2.5 We say v ∈ W
1,p

0 (Ω) is a weak lower solution (weak upper solution) of the
boundary value problem (PN ) if∫

Ω

|∇v|p−2∇v∇ϕdx ≤ (≥)λ

∫
Ω

g(v)βg′(v)ϕdx +
∫

Ω

a(x)g(v)−γ g′(v)ϕdx

and

u ≤ (≥)0 on ∂Ω

for every ϕ ∈ W
1,p

0 (Ω) with ϕ ≥ 0.

Next, we generate lower and upper solutions for problem (PN ). First, we produce a lower
solution.

Lemma 2.6 Assume hypothesis (H) holds, then problem (PN ) admits a positive lower solu-
tion v ∈ C1

0 (Ω̄).
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Proof Consider the following Dirichlet problem:{−�pv = a(x)g′(v) in Ω,

v = 0 on ∂Ω.
(2.2)

Since hypothesis (H) implies that a(x) ∈ Lq(Ω), q > N , note that 0 < g′(v) < 1, by
Lemma 2.3, problem (2.2) has a positive solution ω ∈ C1

0 (Ω̄), and ω > 0 in Ω . Fix 0 < t ≤ 1
so small that v(x) = tω(x) ∈ [0,1), ∀x ∈ Ω̄ . Then using (2.2) and the fact that a(x) ≥ 0,
v(x) ∈ (0,1) for all x ∈ Ω , we have

−�pv = tp−1a(x)g′(v)

≤ a(x)g′(v)

≤ a(x)g′(v)v−γ

≤ a(x)g′(v)g(v)−γ

≤ λg(v)βg′(v) + a(x)g′(v)g(v)−γ .

So v ∈ C1
0(Ω̄) is a lower solution for problem (PN ). �

Next, we produce an upper solution for (PN ).

Lemma 2.7 If hypothesis (H) holds, then there exists λ0 > 0 such that , for all λ ∈ (0, λ0),
problem (PN ) has an upper solution v ∈ C1

0 (Ω). Moreover, v ≥ v in Ω .

Proof Consider the problem{−�pv = a(x)g′(v)g(v)−γ + 1 in Ω,

v = 0 on ∂Ω.
(2.3)

Hypothesis (H) implies a(x)g′(v)g(v)−γ ∈ Lq(Ω), q > N , by Lemma 2.3, problem (2.3)
has a solution v ∈ C1

0 (Ω),

−�pv = a(x)g′(v)g(v)−γ + 1

≥ a(x)g′(v)g(v)−γ

≥ −�pv.

So, v ≥ v. It follows that

−�pv − a(x)g′(v)g(v)−γ − λg(v)βg′(v) ≥ −�pv − a(x)g′(v)g(v)−γ − λg(v)βg′(v)

= 1 − λg(v)βg′(v)

≥ 1 − λvβ,

where we have used g(v)−γ ≤ g(v)−γ , g′(v) ≤ g′(v), since g is increasing and g′ is non-
increasing (see Lemma 2.1). So, there exists λ0 > 0 such that 1 − λvβ ≥ 0 for all λ < λ0.
Hence, v is an upper solution of (PN ) for λ ∈ (0, λ0). �



www.manaraa.com

Soliton Solutions for a Singular Schrödinger Equation. . . 185

Using v, v obtained by Lemma 2.6 and Lemma 2.7, truncation techniques and direct
variational methods, we will prove the following existence result.

Lemma 2.8 Suppose (H) holds, let 0 < β < +∞, γ > 0, then for all λ ∈ (0, λ0), problem
(PN ) has a solution

v0 ∈ C1
0 (Ω) with v ≤ v0 ≤ v in Ω.

Proof Let

f (x, ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

[λg(v)β + a(x)g(v)−γ ]g′(v), ζ < v,

[λg(ζ )β + a(x)g(ζ )−γ ]g′(ζ ), v ≤ ζ ≤ v,

[λg(v)β + a(x)g(v)−γ ]g′(v), ζ > v.

(2.4)

Evidently f (x, ζ ) is a Carathéodory function. We set

F(z, ζ ) =
∫ ζ

0
f (x, s)ds

and consider the C1-functional Î : W 1,p

0 (Ω) → R, defined by

Î (v) = 1

p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, v)dx, ∀v ∈ W
1,p

0 (Ω).

From (2.4), it is clear that Î is coercive. Moreover, exploiting the compactness of the em-
bedding W

1,p

0 (Ω) ↪→ Lp(Ω), we can easily verify that Î is sequentially weakly lower semi-
continuous. Hence by the Weierstrass theorem, we can find v0 ∈ W

1,p

0 (Ω), such that

Î (v0) = inf
{
Î (v) : v ∈ W

1,p

0 (Ω)
}
. (2.5)

So, we have

Î ′(v0) = 0

i.e. ∫
Ω

|∇v0|p−2∇v0∇ϕdx =
∫

Ω

f (x, v0)ϕdx, ∀ϕ ∈ W
1,p

0 (Ω). (2.6)

Taking ϕ = (v0 − v)+ ∈ W
1,p

0 (Ω) as test function in (2.6), using (2.4) and Lemma 2.7, we
obtain∫

Ω

|∇v0|p−2∇v0∇(v0 − v)+dx =
∫

Ω

f (x, v0)(v0 − v)+dx

=
∫

{v0>v}
f (x, v0)(v0 − v)dx

=
∫

{v0>v}

[
λg(v)β + a(x)g(v)−γ

]
g′(v)(v0 − v)dx
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≤
∫

Ω

[
λg(v)β + a(x)g(v)−γ

]
g′(v)(v0 − v)+dx

≤
∫

Ω

|∇v|p−2∇v∇(v0 − v)+dx,

where {v0 > v} denotes the set defined by {v0 > v} = {x ∈ Ω | v0(x) > v(x)}. This means

∫
Ω

{|∇v0|p−2∇v0 − |∇v|p−2∇v
} · ∇(v0 − v)+dx ≤ 0.

From Lemma 2.2 it follows that for some constant cp > 0,

cp

∫
{v0>v}

(|∇v0|p−2 + |∇v|p−2
)|∇(v0 − v)|2dx ≤ 0.

It follows that

∇(v0 − v)+ = 0 in Ω,

and by the Poincaré inequality that (v0 − v)+ = 0 in Ω , i.e.

v0 ≤ v. (2.7)

In a similar fashion, acting on (2.6) with ϕ = (v − v0)
+ ∈ W

1,p

0 (Ω) and using this time
Lemma 2.6, we obtain

v ≤ v0. (2.8)

From (2.7) and (2.8), we obtain

v ≤ v0 ≤ v.

Lemma 2.3 yields v0 ∈ C1
0 (Ω). Using similar arguments as in [2, 32], we have if

‖v − v0‖C1 = ε

with ε small, then v ≤ v ≤ v. Moreover I (v)− Ĩ (v) is constant for v ≤ v ≤ v, and therefore
v0 is also a local minimum of I (v) in the C1-topology. Now, we invoke [15, Theorem 1.1]
to claim that v0 is also a local minimum of I (v) in the W

1,p

0 (Ω) topology. Thus

⎧⎪⎪⎨
⎪⎪⎩

−�pv0 = [λg(v0)
β + a(x)g(v0)

−γ ]g′(v0) in Ω,

v0 > 0 in Ω,

v0 = 0 on ∂Ω

and it is a solution of (PN ). This completes the proof. �

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1 Let v0 be the first solution produced by Lemma 2.8, then using v0, we
introduce the following Carathéodory function:

g0(x, ζ ) =
{[λg(v0)

β + a(x)g(v0)
−γ ]g′(v0), ζ ≤ v0,

[λg(ζ )β + a(x)g(ζ )−γ ]g′(ζ ), ζ > v0,
(2.9)

and consider the problem {−�pv = g0(x, v) in Ω,

v0 = 0 on ∂Ω.
(2.10)

Every solution of problem (2.10) is bigger than v0 and hence also a solution of (PN ). Note
that solutions of (2.10) are the critical points of the C1 functional I0 : W 1,p

0 (Ω) → R, defined
by

I0(v) = 1

p

∫
Ω

|∇v|pdx −
∫

Ω

G0(x, v)dx,

where G0(x, ζ ) = ∫ ζ

0 g0(x, s)ds.

Claim 1. I0 satisfies the C-condition.
Let {vn} ⊆ W

1,p

0 (Ω) be a sequence such that

|I0(vn)| ≤ C1 (2.11)

for some constant C1 > 0 and

(1 + ‖vn‖)I ′
0(vn) → 0 in W−1,p′

(Ω).

This is equivalent to∣∣∣∣
∫

Ω

|∇vn|p−2∇vn∇hdx −
∫

Ω

g0(x, vn)hdx

∣∣∣∣ ≤ εn‖h‖
1 + ‖vn‖ , ∀h ∈ W

1,p

0 (Ω), (2.12)

with εn → 0. Choosing h = vn ∈ W
1,p

0 (Ω) in the above inequality, we have∫
Ω

g0(x, vn)vndx −
∫

Ω

|∇vn|pdx ≤ εn. (2.13)

On the other hand, from (2.11), we have

−
∫

Ω

pG0(x, vn)dx +
∫

Ω

|∇vn|pdx ≤ C2 (2.14)

for some constant C2 > 0. Adding (2.13) and (2.14), we obtain∫
Ω

(
g0(x, vn)vn − pG0(x, vn)

)
dx ≤ C3 (2.15)

for some constant C3 > 0. Denote

Π =
∫

{vn≥v0}

(
g0(x, vn)vn − pG0(x, vn)

)
dx.
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Hence, by (2.9), (2.15) and 1
2 g(t) ≤ g′(t)t ≤ g(t) for all t > 0 (see Lemma 2.1), we have

C3 ≥
∫

{vn<v0}

(
g0(x, vn)vn − pG0(x, vn)

)
dx + Π

≥ (1 − p)

∫
{vn<v0}

(
λg(v0)

β + a(x)g(v0)
−γ

)
g′(v0)vndx + Π

≥ (1 − p)

∫
{vn<v0}

(
λg(v0)

β + a(x)g(v0)
−γ

)
g′(v0)v0dx + Π

≥ (1 − p)

∫
{vn<v0}

(
λg(v0)

1+β + a(x)g(v0)
1−γ

)
dx + Π.

Since p > 1, we have

C4 ≥
∫

{vn≥v0}

(
g0(x, vn)vn − pG0(x, vn)

)
dx, (2.16)

for some constant C4 > 0. It is easy to see that, if γ �= 1,

Π =
∫

{vn≥v0}

(
g0(x, vn)vn − pG0(x, vn)

)
dx

=
∫

{vn≥v0}

[(
λg(vn)

β + a(x)g(vn)
−γ

)
g′(vn)vn − p

(
λg(v0)

β + a(x)g(v0)
−γ

)
g′(v0)v0

− λp

1 + β

(
g(vn)

1+β − g(v0)
1+β

) − p

1 − γ
a(x)

(
g(vn)

1−γ − g(v0)
1−γ

)]
dx (2.17)

if γ = 1,

Π =
∫

{vn≥v0}

(
g0(x, vn)vn − pG0(x, vn)

)
dx

=
∫

{vn≥v0}

[(
λg(vn)

β + a(x)g(vn)
−γ

)
g′(vn)vn − p

(
λg(v0)

β + a(x)g(v0)
−γ

)
g′(v0)v0

− λp

1 + β

(
g(vn)

1+β − g(v0)
1+β

) − pa(x)
(
lng(vn) − lng(v0)

)]
dx. (2.18)

Next, we demonstrate that ‖vn‖ ≤ C for some positive constant C which is independent
of n. Actually, may assume vn ≥ 1, for otherwise we are done by (2.14). If γ > 1, noting
that 1

2 >
p

1+β
and 1

2g(t) ≤ g′(t)t ≤ g(t) for all t > 0 (see Lemma 2.1), by (2.16) and (2.17),
we obtain

C5 ≥
∫

{vn≥v0}

(
1

2
− p

1 + β

)
λg(vn)

1+βdx

≥
∫

{vn≥v0}

(
1

2
− p

1 + β

)
λv

1+β
2

n dx

for some constant C5 > 0. Then ∫
Ω

v
1+β

2
n dx ≤ C6 (2.19)
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for some positive constant C6. If 0 < γ < 1, we can use Hölder inequality and Lemma 2.1
to obtain

p

1 − γ

∫
{vn≥v0}

a(x)g(vn)
1−γ dx ≤ C7

∫
{vn≥v0}

a(x)v
1−γ

2
n dx

≤ C7|Ω|1− 1
q − 1−γ

1+β ‖a‖q

(∫
{vn≥v0}

v
1+β

2
n dx

) 1−γ
1+β

≤ C8

(∫
{vn≥v0}

v
1+β

2
n dx

) 1−γ
1+β

(2.20)

for some positive constants C7 and C8. Thus, it follows from (2.16), (2.17) and (2.20) that

C9 ≥
∫

{vn≥v0}

(
1

2
− p

1 + β

)
λg(vn)

1+βdx − p

1 − γ

∫
{vn≥v0}

a(x)g(vn)
1−γ dx

≥ C10

∫
{vn≥v0}

v
1+β

2
n dx − C8

(∫
{vn≥v0}

v
1+β

2
n dx

) 1−γ
1+β

for some positive constant C9 and C10. Noting that 0 <
1−γ

1+β
< 1, we have

∫
{vn≥v0}

v
1+β

2
n dx ≤ C11,

and hence we obtain ∫
Ω

v
1+β

2
n dx ≤ C12 (2.21)

for some positive constants C11 and C12. If γ = 1, by (2.16) and (2.18), we have

C13 ≥
∫

{vn≥v0}

(
1

2
− p

1 + β

)
λg(vn)

1+βdx − p

∫
{vn≥v0}

a(x)
[
lng(vn) − lng(v0)

]
dx, (2.22)

for some constant C13 > 0. From Lemma 2.1, we know 1
2t

≤ g′(t)
g(t)

≤ 1
t

for t > 0, combing
this fact with mean value theorem, there exists δ ∈ (0,1) such that

lng(vn) − lng(v0) = g′(v0 + δ(vn − v0))

g(v0 + δ(vn − v0))
(vn − v0)

≤ vn − v0

v0 + δ(vn − v0)
≤ 1

δ
,

and (2.22) yields ∫
Ω

v
1+β

2
n dx ≤ C14 (2.23)

for some constant C14 > 0. From (2.19), (2.21) and (2.23), we have, for all γ > 0,∫
Ω

v
1+β

2
n dx ≤ C15 (2.24)
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for some positive constant C15. Returning to (2.14) and using (2.9) and the fact that
g′(t)g(t) < g(t), ∀t > 0, we have∫

Ω

|∇vn|pdx ≤ C2 +
∫

Ω

pG0(x, vn)dx

= C2 +
∫

{vn<v0}
pG0(x, vn)dx +

∫
{vn≥v0}

pG0(x, vn)dx

≤ C16 + p

∫
{vn≥v0}

G0(x, vn)dx. (2.25)

Using (2.24) and (2.25) (Similarly as before, we distinguish three cases: γ > 1, 0 < γ < 1
and γ = 1, the details are omitted), we have∫

Ω

|∇vn|pdx ≤ C18 +
∫

Ω

v
1+β

2
n dx ≤ C

for some constant C > 0. Therefore, we may assume that

vn ⇀ v Lp(Ω),

vn ⇀ v W
1,p

0 (Ω).

In (2.12), we choose h = vn − v ∈ W
1,p

0 (Ω), then∣∣∣∣
∫

Ω

|∇vn|p−2∇vn∇(vn − v)dx −
∫

Ω

g0(x, vn)(vn − v)dx

∣∣∣∣ ≤ εn‖vn − v‖
1 + ‖vn‖ .

So
∫

Ω
|∇vn|p−2∇vn∇(vn − v)dx → 0, using Lemma 2.4, we have

vn → v in W
1,p

0 (Ω).

This proves Claim 1.

Claim 2. I0(t v̂1) → −∞ as t → ∞.
Indeed, Using the fact ‖∇v̂1‖p

p = λ1‖v̂1‖p
p and (2.9), we obtain

I0(t v̂1) = tp

p

∫
Ω

|∇v̂1|pdx −
∫

Ω

G0(x, t v̂1)dx

≤ λ1t
p

p

∫
Ω

|v̂1|pdx −
∫

{t v̂1>v0}
G0(x, t v̂1)dx

= λ1

p

∫
{t v̂1≤v0}

(t v̂1)
pdx +

∫
{t v̂1>v0}

(
λ1

p
(tv̂1)

p − G0(x, t v̂1)

)
dx

≤ C11 +
∫

{t v̂1>v0}

(
λ1

p
(tv̂1)

p − λ

1 + β
g(tv̂1)

1+β − 1

1 − γ
a(x)g(tv̂1)

1−γ

)
dx.

Since p <
β+1

2 and g(t) behaves like t1/2 for t large enough, we have

I0(t v̂1) → −∞ as t → +∞.

This proves Claim 2.
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Claim 3. We can find ρ ∈ (0,1) small enough, such that

I0(v0) < inf
{
I0(v) : ‖v − v0‖ = ρ

}
Define a Carathéodory function on Ω ×R by

g̃0(x, ζ ) =

⎧⎪⎨
⎪⎩

[λg(v0)
β + a(x)g(v0)

−γ ]g′(v0), ζ < v0,

[λg(ζ )β + a(x)g(ζ )−γ ]g′(ζ ), v0 ≤ ζ ≤ v.

[λg(v)β + a(x)g(v)−γ ]g′(v), ζ > v,

and consider the problem {
−�pv = g̃0(x, v) in Ω,

v0 = 0 on ∂Ω.
(2.26)

The corresponding functional is

Ĩ0(v) = 1

p

∫
Ω

|∇v|pdx −
∫

Ω

G̃0(x, v)dx,

where G̃0(x, ζ ) = ∫ ζ

0 g̃0(x, s)ds. Note that v0 ∈ C1
0 (Ω) is a solution of (2.26), hence a lower

solution of (2.26). Moreover, since v0 ≤ v, from (2.9), we see that v is still an upper solution
of (2.26). By similar technique as the proof of Lemma 2.8, we assume ṽ0 is the global
minimizer of the functional Ĩ0. If ṽ0 �= v0, we are done; If ṽ0 = v0, since Ĩ0 = I0 in a C1

0 (Ω)-
neighborhood of v0, so v0 is a local minimum of I0 in the C1

0 (Ω) topology, hence also a
local minimum of I0 in the W

1,p

0 (Ω) topology, so Claim 3 holds.
Since Claim 1, Claim 2 and Claim 3 hold, then the Mountain Pass Theorem [3, 16, 36]

now gives a second critical point v1 ∈ W
1,p

0 (Ω) for I0, hence a solution of problem (PN ).
This completes the proof. �

3 The Critical or Supercritical Case: β + 1 ≥ 2p∗

In this section, we investigate the solvability of (PN ) in the case of critical or supercritical ex-
ponent. Since 1+β

2 ≥ p∗, we point out that the nonlinearity λg(v)βg′(v) + a(x)g(v)−γ g′(v)

has a critical or supercritical growth, and we can not use the variational techniques directly,
by virtue of the lack of compactness of the Sobolev embedding. So, following the idea in
[10, 30, 42], we construct a suitable truncation of λg(v)βg′(v) + a(x)g(v)−γ g′(v) in order
to use variational methods.

Let K > 0 be a real number, whose value will be fixed later, and consider the functional
hK : W 1,p

0 (Ω) →R given by

hK(v) =

⎧⎪⎨
⎪⎩

0, v ≤ 0,

g(v)βg′(v), 0 ≤ v ≤ K,

g(K)β−sg(v)sg′(v), v ≥ K,

(3.1)

where s is a positive constant satisfying p < s+1
2 < p∗ ≤ β+1

2 . The function hK enjoys the
following conditions:

|hK(v)| ≤ g(K)β−sg(v)sg′(v). (3.2)
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Next, we investigate the following truncated problem associated to hK⎧⎪⎨
⎪⎩

−�pv = λhK(v) + a(x)g(v)−γ g′(v) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(PK )

Since (H) holds and p < s+1
2 < p∗, by Theorem 1.1, problem (PK ) has two positive solu-

tions v1, a local minimum, and v2 is of mountain pass type. More precisely, IK(v2) = cM ,
where cM is the mountain pass level associated to the functional

IK(v) = 1

p

∫
Ω

|∇v|pdx − λ

∫
Ω

HK(v)dx − 1

1 − γ

∫
Ω

a(x)g(v)1−γ dx

which is related to the problem (PK ), where

HK(v) =
∫ v

0
hK(t)dt. (3.3)

Obviously, one has IK(vi) ≤ m for some m > cM > 0 independent of λ since vi , HK(vi) and
a(x)g(vi)

1−γ are positive functions (i = 1, 2). To prove Theorem 1.2, we need the following
estimate.

Lemma 3.1 Let v1 and v2 are solutions of problem (PK ), then ‖vi‖ ≤ m0, i = 1,2, for all
λ ≥ 0, where m0 > 0 is a constant does not depend on λ.

Proof Let v1 and v2 be the solutions of (PK ). For simplicity, denote v = vi, i = 1,2, in this
proof. Noting that 1

2g(t) ≤ tg′(t) ≤ g(t) for all t > 0 (see Lemma 2.1) and s < β , we can
use (3.1) and (3.3) to deduce∫

Ω

(
HK(v) − 2

1 + s
hK(v)v

)
dx

=
∫

{0≤v≤K}

(
1

1 + β
g(v)1+β − 2

1 + s
g(v)βg′(v)v

)
dx

+ g(K)β−s

∫
{v≥K}

(
1

1 + s
g(v)1+s − 2

1 + s
g(v)sg′(v)v

)
dx

≤
∫

{0≤v≤K}

(
1

1 + β
g(v)1+β − 1

1 + s
g(v)1+β

)
dx

≤
∫

{0≤v≤K}

(
1

1 + β
− 1

1 + s

)
g(v)1+βdx

≤ 0. (3.4)

If γ �= 1, using again 1
2g(t) ≤ tg′(t) ≤ g(t) for all t > 0 and (3.4), we have

m ≥ IK(v) = IK(v) − 2

1 + s
I ′
K(v)v

≥
(

1

p
− 2

1 + s

)∫
Ω

|∇v|pdx − 1

1 − γ

∫
Ω

a(x)g(v)1−γ dx
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+ 2

1 + s

∫
Ω

a(x)g(v)−γ g′(v)vdx

≥
(

1

p
− 2

1 + s

)∫
Ω

|∇v|pdx − 1

1 − γ

∫
Ω

a(x)g(v)1−γ dx + 1

1 + s

∫
Ω

a(x)g(v)1−γ dx

≥
(

1

p
− 2

1 + s

)∫
Ω

|∇v|pdx −
(

1

1 − γ
− 1

1 + s

)∫
Ω

a(x)g(v)1−γ dx. (3.5)

If γ > 1, since 1
1−γ

− 1
1+s

< 0, it follows from (3.5) that

m ≥
(

1

p
− 2

1 + s

)∫
Ω

|∇v|pdx.

Hence,

‖v‖ ≤ C19 (3.6)

for some positive constant C19 independent of λ.
If 0 < γ < 1, by Hölder inequality, g(t) ≤ t and Sobolev embedding theorem, we get∫

Ω

a(x)g(v)1−γ dx ≤
∫

Ω

a(x)v1−γ dx

≤ ‖a‖q‖v‖1−γ

p∗ |Ω|1− 1
q − 1−γ

p∗

≤ C20‖v‖1−γ ,

for some constant C20 > 0. Thus, by (3.5), we have

m ≥
(

1

p
− 2

1 + s

)
‖v‖p − C20‖v‖1−γ .

Then

‖v‖ ≤ C21 (3.7)

for some positive constant C21 independent of λ.
If γ = 1, using Hölder inequality and Sobolev embedding theorem, we have∫

Ω

a(x)v(x)dx ≤ ‖a‖q‖v‖p∗ |Ω|1− 1
q − 1

p∗

≤ C22|Ω|1− 1
q − 1

p∗ ‖a‖q‖v‖
≤ C23‖v‖,

for some positive constant C22 and C23. then (3.4) yields

m ≥ IK(v) = IK(v) − 2

1 + s
I ′
K(v)v

≥
(

1

p
− 2

1 + s

)
‖v‖p −

∫
Ω

a(x) lng(v)dx + 2

1 + s

∫
Ω

a(x)
g′(v)v

g(v)
dx
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≥
(

1

p
− 2

1 + s

)
‖v‖p −

∫
Ω

a(x) lng(v)dx

≥
(

1

p
− 2

1 + s

)
‖v‖p −

∫
Ω

a(x)v(x)dx

≥
(

1

p
− 2

1 + s

)
‖v‖p − C23‖v‖,

hence, we obtain

‖v‖ ≤ C24 (3.8)

for some positive constant C24 independent of λ. It follows from (3.6), (3.7) and (3.8) that

‖v‖ ≤ m0

for some constant m0 > 0 does not depend on λ. The proof is completed. �

Remark 3.2 One should note that cM is dependent on K , actually, cM is decreasing with re-
spect to K , so, we may assume m0 is also decreasing with respect to K , this fact is important
in the following L∞(Ω) estimate (see inequality (3.18) in the proof of Theorem (1.2)).

Indeed, v1 and v2 also solve problem (PN ), it reduces to an L∞(Ω) estimate, in other
words, we only need to prove ‖ui‖L∞(Ω) ≤ K, (i = 1,2) for some K > 0. Next, we are
going to use Moser iteration method [10, 11, 30, 37, 42] to prove Theorem 1.2.

Proof of Theorem 1.2 For the sake of simplicity, we shall use the following notation:

v := vi, i = 1,2.

For L > 0, let us define the following functions

vL(x) =
{

v(x), if v(x) ≤ L,

L, if v(x) > L,

zL = v
p(τ−1)

L (v − K)+ and wL = vτ−1
L v,

where τ > 1 will be fixed later. Let us use zL as a test function in (PK ), that is∫
Ω

|∇v|p−2∇v∇zLdx = λ

∫
Ω

hK(v)g′(v)zLdx +
∫

Ω

a(x)g(v)−γ g′(v)zLdx. (3.9)

Put D := {x ∈ Ω : v(x) ≥ K}. By Hölder inequality and (3.2), notice that 1
2g(t) ≤ g′(t)t ≤

g(t) for t > 0 and |g(t)| ≤ K0|t | 1
2 for all t ∈ R (see Lemma 2.1), we infer that the right hand

side (RHS for short) of (3.9) is

RHS = λ

∫
D

hK(v)zLdx +
∫

D

a(x)g(v)−γ g′(v)zLdx

= λ

∫
D

hK(v)v
p(τ−1)

L (v − K)+dx +
∫

D

a(x)g(v)−γ g′(v)v
p(τ−1)

L (v − K)+dx
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≤ λg(K)β−s

∫
D

g(v)sg′(v)v
p(τ−1)

L (v − K)dx +
∫

D

a(x)g(v)−γ g′(v)v
p(τ−1)

L (v − K)dx

≤ λKβ−s

∫
D

g(v)sg′(v)vv
p(τ−1)

L dx +
∫

D

a(x)g(v)−γ g′(v)vv
p(τ−1)

L dx

≤ λKβ−s

∫
D

g(v)s+1v
p(τ−1)

L dx +
∫

D

a(x)g(v)1−γ v
p(τ−1)

L dx

≤ λKβ−sKs+1
0

∫
D

v
s+1

2 v
p(τ−1)

L dx + K
1−γ

0

∫
D

a(x)v
1−γ

2 v
p(τ−1)

L dx

≤ λKβ−sKs+1
0

∫
D

v
s+1

2 −pw
p

Ldx + K
1−γ

0

∫
D

a(x)v
1−γ

2 −pw
p

Ldx

≤ λKβ−sKs+1
0

∫
D

v
s+1

2 −pw
p

Ldx + K
1−γ

0 K
1−γ

2 −p

∫
D

a(x)w
p

Ldx

≤ λKβ−sKs+1
0 ‖v‖

p∗(α∗−p)

α∗
p∗ ‖wL‖p

Lα∗
(D)

+ K
1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q‖wL‖p

Lα∗
(D)

≤ [
λKβ−sKs+1

0 ‖v‖
p∗(α∗−p)

α∗
p∗ + K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q

]‖wL‖p

Lα∗
(D)

, (3.10)

where α∗ := pp∗
p∗− s+1

2 +p
, 1

θ
+ 1

q
+ p

α∗ = 1 (this choice of θ is reasonable since we can fix s

such that s+1
2 < p∗ but close to p∗). Returning to the left hand side (LHS for short) of (3.9),

and using the definition of vL, we obtain

LHS =
∫

Ω

|∇v|p−2∇v∇zLdx

=
∫

D

|∇v|p−2∇v∇(
v

p(τ−1)

L (v − K)+)
dx

=
∫

D

|∇v|p−2∇v
(
v

p(τ−1)

L ∇v + p(τ − 1)v
p(τ−1)−1
L (v − K)∇vL

)
dx

=
∫

D

|∇v|pv
p(τ−1)

L dx + p(τ − 1)

∫
D∩{v≤L}

v
p(τ−1)−1
L (v − K)|∇v|p−2∇v∇vLdx

=
∫

D

|∇v|pv
p(τ−1)

L dx + p(τ − 1)

∫
D∩{v≤L}

v
p(τ−1)−1
L (v − K)|∇v|pdx

≥
∫

D

|∇v|pv
p(τ−1)

L dx. (3.11)

From (3.9)–(3.11), we have∫
D

|∇v|pv
p(τ−1)

L dx

≤ [
λKβ−sKs+1

0 ‖v‖
p∗(α∗−p)

α∗
p∗ + K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q

]‖wL‖p

Lα∗
(D)

. (3.12)
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Since τ > 1, by Sobolev embedding theorem, we get

(∫
D

|wL|p∗
dx

) p

p∗
≤ S−1

∫
D

|∇wL|pdx = S−1
∫

D

|∇(
vτ−1

L v
)|pdx

= S−1
∫

D

|(τ − 1)uvτ−2
L ∇vL + vτ−1

L ∇v|pdx

≤ 2p−1S−1

[∫
D

|(τ − 1)uvτ−2
L ∇vL|p +

∫
D

v
p(τ−1)

L |∇v|pdx

]

= 2p−1S−1

[∫
D∩{v≤L}

(τ − 1)pv
p(τ−1)

L |∇v|p +
∫

D

v
p(τ−1)

L |∇v|pdx

]

≤ 2p−1S−1τp

[(
τ − 1

τ

)p

+ 1

τp

]∫
D

v
p(τ−1)

L |∇v|pdx

≤ 2pS−1τp

∫
D

v
p(τ−1)

L |∇v|pdx, (3.13)

where S is given by

S = inf
u∈W

1,p
0 (Ω)\{0}

∫
Ω

|∇v|pdx

(
∫

Ω
|v|p∗dx)

p

p∗
.

It follows from above inequality and ‖v‖ ≤ m0,

‖v‖p∗ ≤ S
− 1

p ‖v‖ ≤ m0S
− 1

p . (3.14)

Thus

λKβ−sKs+1
0 ‖v‖

p∗(α∗−p)

α∗
p∗ + K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q

≤ λKβ−sKs+1
0

(
m0S

− 1
p
) p∗(α∗−p)

α∗ + K
1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q := Cλ,K.

From (3.12)–(3.14), we have

(∫
D

|wL|p∗
dx

) p

p∗
≤ 2pS−1τp

∫
D

v
p(τ−1)

L |∇v|pdx

≤ 2pS−1τpCλ,K‖wL‖p

Lα∗
(D)

. (3.15)

Set τ := p∗
α∗ , since vL ≤ v, we conclude that wL ∈ Lα∗

(D), whenever vτ ∈ Lα∗
(D). We have

from (3.15) that

(∫
D

v
p∗(τ−1)

L vp∗
dx

) 1
p∗

≤ 2τS
− 1

p C
1
p

λ,K

(∫
D

v
α∗(τ−1)
L vα∗

dx

) 1
α∗

≤ 2τS
− 1

p C
1
p

λ,K

(∫
D

vα∗τ dx

) 1
α∗

.
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We now apply Fatou’s lemma to the variable L to obtain

‖v‖Lτp∗
(D) ≤ 2

1
τ S

− 1
pτ τ

1
τ C

1
pτ

λ,K‖v‖Lτα∗
(D) (3.16)

where vτα∗ ∈ L1(D). Since τ = p∗
α∗ > 1 and v ∈ Lp∗

(D), the inequality (3.16) holds for this
choice of τ . Thus, since τ 2α∗ = τp∗, it follows that (3.16) also holds with τ replaced by τ 2.
Hence

‖v‖
Lτ2p∗

(D)
≤ (

2
1
τ2 S

− 1
pτ2 τ

2
τ2 C

1
pτ2

λ,K

)‖v‖
Lτ2α∗

(D)

≤ (
2

1
τ2 S

− 1
pτ2 τ

2
τ2 C

1
pτ2

λ,K

)
2

1
τ S

− 1
pτ τ

1
τ C

1
pτ

λ,K‖v‖Lτα∗
(D)

= (
2

1
τ2 + 1

τ S
− 1

p ( 1
τ2 + 1

τ )
τ

2
τ2 + 1

τ C
1
p ( 1

τ2 + 1
τ )

λ,K

)‖v‖Lp∗
(D)

By iterating this process, we obtain

‖v‖Lτmp∗
(D) ≤ 2

∑m
i=1 τ−i

S
− 1

p

∑m
i=1 τ−i

τ
∑m

i=1
i

τ i C
1
p

∑m
i=1 τ−i

λ,K ‖v‖Lp∗
(D).

Taking limit as m → ∞, we obtain

‖v‖L∞(D) ≤ 2pσ1S−σ1τ σ2C
σ1
λ,Km0S

− 1
p ≤ C∗Cσ1

λ,K,

where σ1 = 1
p

∑∞
i=1 τ−i , σ2 = ∑∞

i=1
i

τ i and C∗ = 2pσ1S−σ1τ σ2m0S
− 1

p .
Next, we will find some suitable value of λ and K , such that

C∗Cσ1
λ,K ≤ K,

that is,

λKβ−sKs+1
0 ‖v‖

p∗(α∗−p)

α∗
p∗ + K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q ≤

(
K

C∗

) 1
σ1

. (3.17)

One may note that C∗ is dependent on m0 which is decreasing with respect to K , (see
Remark 3.2) and 1−γ

2 − p < 0. Thus we can choose K > 0 large to satisfy the inequality

(
K

C∗

) 1
σ1 − K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q > 0, (3.18)

and then fix λK such that

λ ≤ λK := 1

Kβ−sKs+1
0 (m0S

− 1
p )

p∗(α∗−p)

α∗

[(
K

C∗

) 1
σ1 − K

1−γ

0 K
1−γ

2 −p|Ω| 1
θ ‖a‖q

]
. (3.19)

Let λ∗ = min {λ∗, λK}. Thus, we obtain (3.17) for λ ∈ (0, λ∗) and some fixed K > 0 satisfy-
ing (3.18), i.e.

‖v‖L∞(D) ≤ K, ∀λ ∈ (
0, λ∗)

and by the definition of D, we have ‖u‖L∞(Ω\D) ≤ K . To summarize, we have
‖v‖L∞(Ω) ≤ K,∀λ ∈ (0, λ∗). �
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